Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.797
Filtrar
1.
Environ Geochem Health ; 46(4): 138, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483661

RESUMO

To assess the total daily mercury intake and main exposure sources of residents, six food groups, including marine fish, freshwater fish, poultry, livestock, vegetables, and cereals, were collected from five districts of Chengdu, China. The median concentrations of total mercury (THg) and methylmercury (MeHg) were 12.8 and 6.94 µg kg-1 ww, respectively. Cereals (32.2%), vegetables (30.5%), and livestock (16.2%) contributed to a much larger extent to the total consumption for the participants in Chengdu. All food categories that contributed the most of THg (2.16 µg day-1) and MeHg 1.44 (µg day-1) to the daily intake in Chengdu were cereals and marine fish, respectively. The total Hazard Ratios values below 1 in this study indicate that there is no health risk associated with Hg ingestion from the consumption of these foods for the residents in Chengdu.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Animais , Humanos , Mercúrio/análise , Monitoramento Ambiental , Contaminação de Alimentos/análise , Compostos de Metilmercúrio/análise , Dieta , Medição de Risco , Verduras , Peixes , Grão Comestível/química , China
2.
Food Chem Toxicol ; 187: 114598, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38493981

RESUMO

Seafood products accumulate methylmercury throughout the food chain and are the main source of methylmercury exposure. Methylmercury may trigger a number of adverse health effects, such as neurodevelopmental or nephrotoxic effects, the risk of which cannot be ruled out for the French high consumers of seafood. The characterisation of methylmercury-related risks is generally based on short-term dietary exposure without considering changes in consumption and exposure over the lifetime. Additionally, focusing on short-term dietary exposure, the fate of methylmercury (especially its accumulation) in the organism is not considered. The present study proposes a methodology basing risk characterization on estimates of body burden over a lifetime. First, trajectories of dietary exposures throughout lifetime were constructed based on the actual concentrations of total diet studies for a fictive representative French population, taking into account the social, economic and demographic parameters of individuals. Next, the fate of methylmercury in the body was estimated, based on these trajectories, using a specific physiologically-based kinetic (PBK) model that generated a representative pool of body burden trajectories. Simulated hair mercury concentrations were closed to previously reported French representative human biomonitoring data. Results showed that at certain stages of life, concentrations of methylmercury in hair were higher than the human biomonitoring guidance value set at 2.5 µg/g of hair by JECFA. This study showed the added value, in the case of substances accumulating in the body, of estimating dietary exposure over a lifetime and using exposure biomarkers estimated by a PBK model characterize the risk.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Humanos , Compostos de Metilmercúrio/toxicidade , Compostos de Metilmercúrio/análise , Alimentos Marinhos/análise , Contaminação de Alimentos/análise , Dieta , Exposição Dietética , Mercúrio/análise
3.
Environ Pollut ; 346: 123573, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38365074

RESUMO

The goal of this study was to explore the role of non-mercury (Hg) methylating taxa in mercury methylation and to identify potential links between elemental cycles and Hg methylation. Statistical approaches were utilized to investigate the microbial community and biochemical functions in relation to methylmercury (MeHg) concentrations in marine and freshwater sediments. Sediments were collected from the methylation zone (top 15 cm) in four Hg-contaminated sites. Both abiotic (e.g., sulfate, sulfide, iron, salinity, total organic matter, etc.) and biotic factors (e.g., hgcA, abundances of methylating and non-methylating taxa) were quantified. Random forest and stepwise regression were performed to assess whether non-methylating taxa were significantly associated with MeHg concentration. Co-occurrence and functional network analyses were constructed to explore associations between taxa by examining microbial community structure, composition, and biochemical functions across sites. Regression analysis showed that approximately 80% of the variability in sediment MeHg concentration was predicted by total mercury concentration, the abundances of Hg methylating taxa, and the abundances of the non-Hg methylating taxa. The co-occurrence networks identified Paludibacteraceae and Syntrophorhabdaceae as keystone non Hg methylating taxa in multiple sites, indicating the potential for syntrophic interactions with Hg methylators. Strong associations were also observed between methanogens and sulfate-reducing bacteria, which were likely symbiotic associations. The functional network results suggested that non-Hg methylating taxa play important roles in sulfur respiration, nitrogen respiration, and the carbon metabolism-related functions methylotrophy, methanotrophy, and chemoheterotrophy. Interestingly, keystone functions varied by site and did not involve carbon- and sulfur-related functions only. Our findings highlight associations between methylating and non-methylating taxa and sulfur, carbon, and nitrogen cycles in sediment methylation zones, with implications for predicting and understanding the impact of climate and land/sea use changes on Hg methylation.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Mercúrio/análise , Sedimentos Geológicos/química , Compostos de Metilmercúrio/análise , Água Doce , Metilação , Carbono , Enxofre , Sulfatos/análise , Poluentes Químicos da Água/análise
4.
Environ Geochem Health ; 46(3): 83, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38367093

RESUMO

To investigate the influence of mercury (Hg) mining/smelting on the surrounding soil environment, ninety soil samples were collected around Hg mining/smelting areas in Tongren city, Guizhou Province, Southwest China. The total mercury (THg), methylmercury (MeHg), bioavailability and fractions of Hg in the soil and their potential risk were evaluated. The results showed that Hg mining/smelting significantly increased the soil pH and decreased the soil organic matter content (p < 0.05). The THg content in the surrounding soil was much higher than that at the control site, with almost all the samples exceeding the national standard in China (3.4 mg/kg, GB15618-2018). Similarly, the concentrations of MeHg (0.09-2.74 µg/kg) and bioavailable Hg (0.64-62.94 µg/kg) in these soil samples were also significantly higher than those in the control site. However, the MeHg/THg ratio was significantly lower in mining/smelting influenced soils (0.01-0.68%) than in control soils (0.60-3.72%). Fraction analysis revealed that residual (RES-Hg) and organic matter-bounded (OM-Hg) Hg accounted for more than 50% of the THg. Ecological risk assessment revealed that the potential ecological risk for most of the Hg mining/smelting-influenced soils (30.16 ≤ Er ≤ 2280.02) were higher than those at the control site (15.12 ≤ Er ≤ 27.1). In addition, these Hg mining/smelting-influenced soils posed acceptable noncarcinogenic risks to adults (except for two soil samples), with hazard indices (HIs) ranging from 0.04 to 1.11 and a mean HI of 0.44. However, children suffer serious noncarcinogenic risks, with HIs ranging from 0.34 to 7.43 and a mean HI of 3.10.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes do Solo , Criança , Humanos , Mercúrio/análise , Solo/química , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Monitoramento Ambiental/métodos , Compostos de Metilmercúrio/toxicidade , Compostos de Metilmercúrio/análise , China , Mineração , Medição de Risco
6.
Environ Pollut ; 343: 123270, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38163627

RESUMO

The cross-shelf distributions of total mercury (THg), methylmercury (MeHg) and organic and inorganic matter, as well as the presence of the hgcA gene were investigated on the East Siberian Shelf (ESS) to understand the processes underlying the speciation of sedimentary Hg. Samples were collected from 12 stations grouped into four zones based on water depth: inner shelf (5 stations), mid-shelf (3 stations), outer shelf (2 stations), and slope (2 stations). The THg concentration in the surface sediment increased from the inner shelf (0.25 ± 0.023 nmol g-1) toward the slope (0.52 nmol g-1), and, when normalized to total organic carbon content, the THg showed a positive correlation with the clay-to-sand ratio (r2 = 0.48, p = 0.012) and degree of chemical weathering (r2 = 0.79, p = 0.0001). The highest MeHg concentrations (3.0 ± 1.8 pmol g-1), as well as peaks in the S/C ratio (0.012 ± 0.002) of sediment-leached organic matter, were found on the mid-shelf, suggesting that the activities of sulfate reducers control the net Hg(II) methylation rates in the sediment. This was supported by results from a principal component analysis (PCA) performed with Hg species concentrations and sediment-leached organic matter compositions. The site-specific variation in MeHg showed the highest similarity with that of CHONS compounds in the PCA, where Deltaproteobacteria were projected to be putative Hg(II) methylators in the gene analysis. In summary, the hydrodynamic sorting of lithogenic particles appears to govern the cross-shelf distribution of THg, and in situ methylation is considered a major source of MeHg in the ESS sediment.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Mercúrio/análise , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Compostos de Metilmercúrio/análise , Oceanos e Mares
7.
Talanta ; 270: 125612, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38169277

RESUMO

Mercury is a pervasive and concerning pollutant due to its toxicity, mobility, and tendency to biomagnify in aquatic and terrestrial ecosystems. Speciation analysis is crucial to assess exposure and risks associated with mercury, as different mercury species exhibit varying properties and toxicities. This study aimed at developing a selective detection method for organic mercury species in a non-invasive biomonitoring matrix like human hair. The method is based on frontal chromatography (FC) in combination with inductively coupled plasma mass spectrometry (ICP-MS), using a low pressure, homemade, anion exchange column inserted in a standard ICP-MS introduction system, without requiring high-performance liquid chromatography (HPLC) hyphenation. In addition to the extreme simplification and cost reduction of the chromatographic equipment, the proposed protocol involves a fast, streamlined and fully integrated sample preparation process (in contrast to existing methods): the optimized procedure features a 15-min ultrasonic assisted extraction procedure and 5 min analysis time. Consequently, up to 100 samples could be analyzed daily, making the method highly productive and suitable for large-scale screening programs in public and environmental health. Moreover, the optimized procedure enables a limit of detection (LOD) of 5.5 µg/kg for a 10 mg hair microsample. All these features undeniably demonstrate a significant advancement in routine biomonitoring practices. To provide additional evidence, the method was applied to forty-nine human hair samples from individuals with varying dietary habits successfully finding a clear correlation between methylmercury levels (ranging from 0.02 to 3.2 mg/kg) in hair and fish consumption, in line with previous literature data.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Animais , Humanos , Monitoramento Biológico , Ecossistema , Mercúrio/análise , Compostos de Metilmercúrio/análise , Cromatografia Líquida de Alta Pressão/métodos , Cabelo/química
8.
Environ Sci Technol ; 58(3): 1709-1720, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38181227

RESUMO

Mercury (Hg)-impaired aquatic ecosystems often receive multiple inputs of different Hg species with varying potentials for transformation and bioaccumulation. Over time, these distinct input pools of Hg homogenize in their relative distributions and bioaccumulation potentials as a result of biogeochemical processes and other aging processes within the ecosystem. This study sought to evaluate the relative time scale for homogenization of multiple Hg inputs to wetlands, information that is relevant for ecosystem management strategies that consider Hg source apportionment. We performed experiments in simulated freshwater wetland mesocosms that were dosed with four isotopically labeled mercury forms: two dissolved forms (Hg2+ and Hg-humic acid) and two particulate forms (nano-HgS and Hg adsorbed to FeS). Over the course of one year, we monitored the four Hg isotope endmembers for their relative distribution between surface water, sediment, and fish in the mesocosms, partitioning between soluble and particulate forms, and conversion to methylated mercury (MeHg). We also evaluated the reactivity and mobility of Hg through sequential selective extractions of sediment and the uptake flux of aqueous Hg in a diffusive gradient in thin-film (DGT) passive samplers. We observed that the four isotope spikes were relatively similar in surface water concentration (ca. 3000 ng/L) immediately after spike addition. At 1-3 months after dosing, Hg concentrations were 1-50 ng/L and were greater for the initially dissolved isotope endmembers than the initially particulate endmembers. In contrast, the Hg isotope endmembers in surface sediments were similar in relative concentration within 2 months after spike addition. However, the uptake fluxes of Hg in DGT samplers, deployed in both the water column and surface sediment, were generally greater for initially dissolved Hg endmembers and lower for initially particulate endmembers. At one year postdosing, the DGT-uptake fluxes were converging toward similar values between the Hg isotope endmembers. However, the relative distribution of isotope endmembers was still significantly different in both the water column and sediment (p < 0.01 according to one-way ANOVA analysis). In contrast, selective sequential extractions resulted in a homogeneous distribution, with >90% of each endmember extracted in the KOH fraction, suggesting that Hg species were associated with sediment organic matter. For MeHg concentrations in surface sediment and fish, the relative contributions from each endmember were significantly different at all sampling time points. Altogether, these results provide insights into the time scales of distribution for different Hg species that enter a wetland ecosystem. While these inputs attain homogeneity in concentration in primary storage compartments (i.e., sediments) within weeks after addition, these input pools remain differentiated for more than one year in terms of reactivity for passive samplers, MeHg concentration, and bioaccumulation.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Animais , Mercúrio/análise , Compostos de Metilmercúrio/análise , Áreas Alagadas , Ecossistema , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Sedimentos Geológicos/análise , Água Doce , Peixes , Água , Isótopos/análise
9.
J Chromatogr A ; 1717: 464683, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38295741

RESUMO

The complex and cumbersome preparation of magnetic covalent organic frameworks (COFs) nanocomposites on a small scale limits their application. Herein, a rapid and easy route was employed for the preparation of magnetic thiourea-based COFs nanocomposites. COFs were coated on Fe3O4 nanoparticles at room temperature without a catalyst within approximately 30 min. This method is suitable for the large-scale preparation of magnetic adsorbent. Using the as-prepared magnetic adsorbent (Fe3O4@COF-TpTU), we developed a simple, efficient, and sensitive magnetic solid-phase extraction-high performance liquid chromatography-inductively coupled plasma-mass spectrometry (MSPE-HPLC-ICP-MS) for the enrichment and determination of mercury species, including Hg2+, methylmercury (MeHg), and ethylmercury (EtHg). The effects of the experimental parameters on the extraction efficiency, including solution pH, adsorption and desorption time, composition and volume of the elution solvent, salinity, coexisting ions, and dissolved organic matter, were comprehensively investigated. Under optimised conditions, the limits of detection in the developed method were 0.56, 0.34, and 0.47 ng L-1 with enrichment factors of 190, 195, and 180-fold for Hg2+, MeHg, and EtHg, respectively. The satisfactory spiked recoveries (97.0-103%) in real water samples and high consistency between the certified and determined values in a certified reference material demonstrate the high accuracy and reproducibility of the developed method. The as-proposed method with simple operation, high sensitivity, and excellent anti-matrix interference performance was successfully applied to the enrichment and determination of trace levels of mercury species in the natural samples with complicated matrices, such as underground water, surface water, seawater and biological samples.


Assuntos
Mercúrio , Estruturas Metalorgânicas , Compostos de Metilmercúrio , Mercúrio/análise , Estruturas Metalorgânicas/química , Cromatografia Líquida de Alta Pressão/métodos , Tioureia , Reprodutibilidade dos Testes , Temperatura , Compostos de Metilmercúrio/análise , Água/química , Fenômenos Magnéticos , Extração em Fase Sólida/métodos
10.
Environ Sci Technol ; 58(6): 2762-2773, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38294849

RESUMO

Upwelling plays a pivotal role in supplying methylmercury (MeHg) to the upper oceans, contributing to the bioaccumulation of MeHg in the marine food web. However, the influence of the upwelling of Circumpolar Deep Water (CDW), the most voluminous water mass in the Southern Ocean, on the MeHg cycle in the surrounding oceans and marine biota of Antarctica remains unclear. Here, we study the mercury (Hg) isotopes in an ornithogenic sedimentary profile strongly influenced by penguin activity on Ross Island, Antarctica. Results indicate that penguin guano is the primary source of Hg in the sediments, and the mass-independent isotope fractionation of Hg (represented by Δ199Hg) can provide insights on the source of marine MeHg accumulated by penguin. The Δ199Hg in the sediments shows a significant decrease at ∼1550 CE, which is primarily attributed to the enhanced upwelling of CDW that brought more MeHg with lower Δ199Hg from the deeper seawater to the upper ocean. We estimate that the contribution of MeHg from the deeper seawater may reach more than 38% in order to explain the decline in Δ199Hg at ∼1550 CE. Moreover, we found that the intensified upwelling may have increased the MeHg exposure for marine organisms, highlighting the importance of CDW upwelling on the MeHg cycle in Antarctic coastal ecosystems.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Compostos de Metilmercúrio/análise , Isótopos de Mercúrio/análise , Regiões Antárticas , Ecossistema , Água , Monitoramento Ambiental/métodos , Mercúrio/análise , Oceanos e Mares , Cadeia Alimentar , Poluentes Químicos da Água/análise
11.
J Hazard Mater ; 465: 133492, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38227998

RESUMO

Methylmercury is primarily responsible for most food mercury pollution cases. However, most biosensors developed for mercury pollution analysis can only detect mercury ions. Although oxidative strong-acid digestion or microwave-assisted digestion can convert methylmercury into mercury ions, it is unsuitable for on-site detection. This study designed a bio-digestion gene circuit and integrated it into a mercury ion whole-cell biosensor,creating a novel on-site methylmercury detection method. Five alkyl mercury lyases from different bacterial genomes were screened via bioinformatics analysis, of which goMerB from Gordonia otitis showed the highest catalytic biological digestion efficiency. The goMerB site-specific saturation and random mutation libraries were constructed. After two rounds of high-throughput visualization screening, the catalytic activity of the mutant increased 2.5-fold. The distance between the three crucial amino acid sites and methylmercury changed in the mutant, which likely contributed to the enhanced catalytic efficiency. The optimized whole-cell biosensor showed a linear dynamic concentration range of 100 nM to 100 µM (R2 =0.991), satisfactory specificity, and interference resistance. The detection limit of the goMerBt6-MerR-RFP biosensor was 0.015 µM, while the limit of quantitation was 0.049 µM. This study demonstrated the application of synthetic biology for food safety detection and highlighted the future potential of "Lab in a Cell" for hazard analysis.


Assuntos
Técnicas Biossensoriais , Mercúrio , Compostos de Metilmercúrio , Mercúrio/análise , Compostos de Metilmercúrio/análise , Técnicas Biossensoriais/métodos , Íons , Digestão
12.
Environ Pollut ; 342: 123027, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38016588

RESUMO

The North Sea is an ecologically rich habitat for marine wildlife which has also been impacted by industrial developments and anthropogenic emissions of contaminants such as mercury. Marine mammals are particularly susceptible to mercury exposure, due to their trophic position, long lifespan, and dependence on (increasingly contaminated) aquatic prey species. To mitigate impact, marine mammals can detoxify methylmercury by binding it to selenium-containing biomolecules, creating insoluble mercury selenide granules. Here, liver, kidney, muscle, and brain samples from an adult male bottlenose dolphin (Tursiops truncatus) with known elevated mercury concentrations were analysed through scanning electron microscopy (SEM). Tiemannite (HgSe) deposits were identified in all organs, ranging from 400 nm to 5 µm in diameter, with particle size being organ-dependent. Although reported in other studies, this is the first time that the three-dimensional nature of tiemannite is captured in marine mammal tissue.


Assuntos
Golfinho Nariz-de-Garrafa , Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Animais , Masculino , Mercúrio/análise , Poluentes Químicos da Água/análise , Compostos de Metilmercúrio/análise , Golfinho Nariz-de-Garrafa/metabolismo , Fígado/metabolismo
13.
J Hazard Mater ; 465: 133236, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38141298

RESUMO

Biochar could reshape microbial communities, thereby altering methylmercury (MeHg) concentrations in rice rhizosphere and seeds. However, it remains unclear whether and how biochar amendment perturbs microbe-mediated MeHg production in mercury (Hg) contaminated paddy soil. Here, we used pinecone-derived biochar and its six modified biochars to reveal the disturbance. Results showed that selenium- and chitosan-modified biochar significantly reduced MeHg concentrations in the rhizosphere by 85.83% and 63.90%, thereby decreasing MeHg contents in seeds by 86.37% and 75.50%. The two modified bicohars increased the abundance of putative Hg-resistant microorganisms Bacillus, the dominant microbe in rhizosphere. These reductions about MeHg could be facilitated by biochar sensitive microbes such as Oxalobacteraceae and Subgroup_7. Pinecone-derived biochar increased MeHg concentration in rhizosphere but unimpacted MeHg content in seeds was observed. This biochar decreased the abundance in Bacillus but enhanced in putative Hg methylator Desulfovibrio. The increasing MeHg concentration in rhizosphere could be improved by biochar sensitive microbes such as Saccharimonadales and Clostridia. Network analysis showed that Saccharimonadales and Clostridia were the most prominent keystone taxa in rhizosphere, and the three biochars manipulated abundances of the microbes related to MeHg production in rhizosphere by those biochar sensitive microbes. Therefore, selenium- and chitosan-modified biochar could reduce soil MeHg production by these microorganisms, and is helpful in controlling MeHg contamination in rice.


Assuntos
Carvão Vegetal , Quitosana , Mercúrio , Compostos de Metilmercúrio , Oryza , Selênio , Poluentes do Solo , Compostos de Metilmercúrio/análise , Poluentes do Solo/análise , Mercúrio/análise , Solo
14.
J Hazard Mater ; 464: 132930, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-37980829

RESUMO

Previous studies have suggested that growth dilution may be an important factor contributing to the low fish Hg levels in China. To evaluate the impact of growth rate to MeHg bioaccumulation in fish in the Three Gorges Reservoir (TGR), this study used two fish species, Aristichthys nobilis (A. nobilis) and Coilia nasus (C. nasus), which differ significantly in their growth rates. A combined bioenergetic-toxicokinetic model was used to simulate methylmercury (MeHg) concentrations in these two species. The model simulations were compared with the field data and showed good fits. It explained 44.0% and 46.5% of the variation in MeHg concentrations in A. nobilis and C. nasus, respectively. Sensitivity analysis revealed that growth rate accounted for 50.9% and 16.0% of MeHg concentrations in A. nobilis and C. nasus, respectively. This indicated that growth rate was the most critical factor affecting MeHg concentrations in fast-growing fish, such as A. nobilis. However, in species with low growth rate, such as C. nasus, the effect of growth rate was not as prominent as that in fast-growing fish. As a result, MeHg elimination rates and diet MeHg levels could offset the effect of growth, and become the decisive factors for MeHg concentrations in slow-growing fish.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Animais , Mercúrio/análise , Poluentes Químicos da Água/análise , Compostos de Metilmercúrio/análise , Peixes , Cadeia Alimentar , China , Monitoramento Ambiental
15.
Chemosphere ; 346: 140502, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37866498

RESUMO

Quantifying mercury (Hg) concentrations in invertebrates is fundamental to determining risk for bioaccumulation in higher trophic level organisms in coastal food webs. Bioaccumulation is influenced by local mercury concentrations, site geochemistry, individual feeding ecologies, and trophic position. We sampled seven species of invertebrates from five coastal sites in the Minas Basin, Bay of Fundy, and determined body concentrations of methylmercury (MeHg), total mercury (THg), and stable isotopes of nitrogen (δ15N) and carbon (δ13C). To evaluate the effects of environmental chemistry on Hg production and bioaccumulation, bulk sediments from all sites were analysed for THg, %Loss on ignition (LOI) (carbon), and sulfur isotopes (δ34S), and concentrations of MeHg, Total Organic Carbon (TOC), sulfate, and sulfide were measured in porewaters. The mean concentration of MeHg in tissues for all invertebrates sampled was 10.03 ± 7.04 ng g-1). MeHg in porewater (mean = 0.22-1.59 ng L-1) was the strongest predictor of invertebrate MeHg, but sediment δ34S (-0.80-14.1‰) was also a relatively strong predictor. δ34S in tissues (measured in three species; Corophium volutator, Ilyanassa obsoleta, and Littorina littorea) were positively related to MeHg in invertebrates (r = 0.55, 0.22, and 0.71 respectively), and when used in combination with δ15N and δ13C values improved predictions of Hg concentrations in biota. Hg concentrations in the amphipod Corophium volutator (mean MeHg = 10.60 ± 1.90 ng g-1) were particularly well predicted using porewater and sediment chemistry, highlighting this species as a useful bioindicator of Hg contamination in sediments of the Bay of Fundy.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Animais , Compostos de Metilmercúrio/análise , Bioacumulação , Peixes , Invertebrados , Mercúrio/análise , Cadeia Alimentar , Carbono/química , Poluentes Químicos da Água/análise , Monitoramento Ambiental
16.
Zhongguo Zhong Yao Za Zhi ; 48(22): 6173-6182, 2023 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-38114224

RESUMO

Cinnabaris is a traditional Chinese medicine(TCM) commonly used for sedation and tranquilization in clinics, and its safety has always been a concern. This study intends to investigate the species and tissue distribution of mercury in rats after continuous administration of Cinnabaris. In the experiment, 30 rats were randomly divided into the control group(equivalent to 0.5% carboxy-methyl cellulose sodium), low-dose Cinnabaris group(0.2 g·kg~(-1)), high-dose Cinnabaris group(2 g·kg~(-1)), pseudogerm-free control group(equivalent to 0.5% sodium carboxymethyl cellulose), and pseudogerm-free Cinnabaris group(2 g·kg~(-1)). They were orally administered for 30 consecutive days. Ultrasound-assisted acid extraction method combined with high performance liquid chromatography and inductively coupled plasma-mass spectrometry(HPLC-ICP-MS) was adopted to determine inorganic mercury [Hg(Ⅱ)], methylmercury(MeHg), and ethylmercury(EtHg) in different tissue, plasma, urine, and feces of rats. The optimal detection conditions and extraction methods were optimized, and the linearity(R~2>0.999 3), precision(RSD<7.0%), and accuracy(spike recoveries ranged from 73.05% to 109.5%) of all the mercury species were satisfied, meeting the requirements of analysis. The results of mercury species detection showed that Hg(Ⅱ) was detected in all the tissue of the five experimental groups, and the main accumulating organs were the intestinal tract, stomach, and kidney. MeHg existed at a low concentration in most tissue, and EtHg was not detected in all groups. In addition, pathological examination results showed that hepatocyte vacuolar degeneration, loose cytoplasm, light staining, and mononuclear cell infiltration were observed in the high-dose Cinnabaris group, low-dose Cinnabaris group, and pseudogerm-free Cinnabaris group, with slightly milder lesions in the low-dose Cinnabaris group. Hydrous degeneration of renal tubular epithelium could be seen in the high-dose Cinnabaris group and pseudogerm-free Cinnabaris group, but there was no significant difference between the other groups and the control group. No abnormal changes were found in the brain tissue of rats in each group. This paper studied the different mercury species and tissue distribution in normal and pseudogerm-free rats after continuous administration of Cinnabaris for 30 days and clarified its effects on the tissue structure of the liver, kidney, and brain, which provided supporting evidence for the safety evaluation of Cinnabaris.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Ratos , Animais , Mercúrio/análise , Distribuição Tecidual , Compostos de Metilmercúrio/toxicidade , Compostos de Metilmercúrio/análise , Cromatografia Líquida de Alta Pressão/métodos , Sódio
17.
Environ Sci Technol ; 57(49): 20792-20801, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38016692

RESUMO

Run-of-river (ROR) power plants impound limited terrestrial areas compared to traditional hydropower plants with large reservoirs and are assumed to have reduced impacts on mercury cycling. We conducted a study on periphyton and benthic communities from different habitats of the St. Maurice River (Québec, Canada) affected by two ROR power plants and their effect on the bioaccumulation and biomagnification of monomethylmercury (MMHg). Proportion of total mercury as MMHg reached maximum values about 2.9 times higher in flooded sites compared to unflooded sites. Impoundment by ROR would therefore provide favorable environments for the growth of periphyton, which can produce and accumulate MMHg. Periphyton MMHg concentrations significantly explained concentrations in some benthic macroinvertebrates, reflecting a local transfer. Through the analysis of δ13C and δ15N signatures, we found that flooding, creating scattered lenthic habitats, led to modifications in trophic structures by the introduction of new organic matter sources. The computed trophic magnification slopes did not show significant differences in the transfer efficiency of MMHg between sectors, while intercepts of flooded sectors were higher. Increases in MMHg concentrations in flooded areas are likely due to the impoundment, combined with watershed disturbances, and the creation of small habitats favorable to periphyton should be included in future predictive models.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Animais , Cadeia Alimentar , Bioacumulação , Rios , Mercúrio/análise , Biofilmes , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Peixes , Compostos de Metilmercúrio/análise
18.
J Chromatogr A ; 1712: 464472, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37924619

RESUMO

Transformations between dimethylmercury (DMHg) and other mercury (Hg) species have been one of the critical knowledge gaps in the Hg global biogeochemical cycle due to the lack of detailed studies. The preparation and measurement of DMHg are challenging due to the high toxicity and volatility of DMHg. In this work, we invented a new DMHg generator for successfully preparing high-purity DMHg in a highly controllable and safe way. The DMHg could be spontaneously volatilized and diffused from the original preparation solution to the solution to be studied. The parameters for generating DMHg were optimized to be the pH value of 4.0 with a MeCo/Hg2+ molar ratio of 10 at 20 °C. The following measurement method of DMHg in the presence of various species of Hg was also investigated and optimized. Hg0 and DMHg could be separated effectively with the carrier gas flow rate of 15 mL min-1 and the gas chromatography column temperature of 30 °C. The interferences of Hg0, monomethylmercury and other species were excluded by systematic control experiments. A sensitive and reliable approach for quantifying trace DMHg in water was developed. Under the optimal conditions, the limits of detection for Hg0, MMHg and DMHg were 0.03, 0.002 and 0.024 ng L-1, respectively, with the relative standard deviation below 8.2%. The developed method was validated by the determination Hg species of different natural water samples. This work is expected to provide a new and safe strategy for DMHg preparation and a verified method for DMHg measurement.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Espectrometria de Fluorescência , Cromatografia Gasosa-Espectrometria de Massas , Poluentes Químicos da Água/análise , Compostos de Metilmercúrio/análise , Mercúrio/análise , Água
19.
Neurotoxicology ; 99: 195-205, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37866693

RESUMO

In 2001 the U.S. Food and Drug Administration (FDA) issued precautionary advice to pregnant women to limit fish consumption over concern that the methylmercury content might harm their children's neurodevelopment. This concern was based largely on results from an epidemiological study of mothers primarily exposed to methylmercury from consuming pilot whale. Subsequently, FDA and the World Health Organization/Food and Agriculture Organization (WHO/FAO) undertook independent assessments of fish consumption that considered net effects from both fish nutrients, primarily omega-3 fatty acids, as beneficial and methylmercury as harmful. Both assessments estimated that when mothers regularly consume fish during pregnancy, their children are likely to have improved neurodevelopment compared to children of non-fish eaters despite their exposure to methylmercury. These estimated improvements included gains of two to over five full scale IQ points from levels of maternal consumption that are achievable in most of the world. Consistent with those estimates, human research on fish consumption and child neurodevelopment from more than 200,000 mother-child pairs now collectively reports 51 beneficial associations with neurodevelopmental outcomes and three adverse associations, the latter with no discernable pattern. These associations include full scale IQ gains similar to, or somewhat higher than, those estimated by FDA and FAO/WHO. Also consistent with the FDA and FAO/WHO estimates, research has reported beneficial associations with fish consumption when pregnant women are exposed to methylmercury from fish in excess of the U.S. Environmental Protection Agency's (EPA) Reference Dose (RfD). Our analysis evaluates how the net effects approach as utilized by FDA and FAO/WHO provides a holistic explanation for these results with implications for public health policy. This concordance of net effects modeling and empirical scientific evidence supports a clarification of current public health recommendations to focus on greater fish consumption by pregnant women for their children's neurodevelopment.


Assuntos
Ácidos Graxos Ômega-3 , Compostos de Metilmercúrio , Animais , Humanos , Feminino , Gravidez , Compostos de Metilmercúrio/toxicidade , Compostos de Metilmercúrio/análise , Alimentos Marinhos/efeitos adversos , Alimentos Marinhos/análise , Peixes , Mães , Contaminação de Alimentos/análise
20.
Neurotoxicology ; 99: 115-119, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37832849

RESUMO

BACKGROUND: Consumption of fish yields many nutritional benefits, but also results in exposure to methylmercury (MeHg). The developing brain is known to be particularly susceptible to MeHg toxicity in high doses. However, the potential impact of low-level environmental exposure from fish consumption on children's neurodevelopment remains unclear. METHODS: We investigated postnatal MeHg exposure at 7 years and its association with a battery of 17 neurodevelopmental outcomes in a subset of children (n = 376) from 1535 enrolled mother-child pairs in Nutrition Cohort 2 of the Seychelles Child Development Study (SCDS NC2). Each outcome was modeled in relation to postnatal MeHg exposure using linear regression, adjusting for prenatal MeHg exposure, levels of maternal polyunsaturated fatty acids (PUFA), and several other covariates known to be associated with neurodevelopmental outcomes. RESULTS: Median postnatal MeHg exposure at 7 years was 2.5 ppm, while the median prenatal MeHg exposure was 3.5 ppm. We found no statistically significant associations between postnatal MeHg exposure and any of the 17 neurodevelopmental outcomes after adjusting for prenatal MeHg exposure and other covariates. CONCLUSIONS: These findings are consistent with previous cross-sectional analyses of the SCDS Main Cohort. Continued follow-up of the entire NC2 cohort at later ages with repeated exposure measures is needed to further confirm these findings.


Assuntos
Compostos de Metilmercúrio , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Feminino , Animais , Humanos , Compostos de Metilmercúrio/toxicidade , Compostos de Metilmercúrio/análise , Desenvolvimento Infantil , Seicheles/epidemiologia , Estudos Transversais , Estudos de Coortes , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Contaminação de Alimentos/análise , Exposição Materna/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...